鍍金池/ 教程/ Linux/ select_tut()函數(shù) Unix/Linux
outb()函數(shù) Unix/Linux
getpeername()函數(shù) Unix/Linux
io_setup()函數(shù) Unix/Linux
mknod()函數(shù) Unix/Linux
arch_prctl()函數(shù) Unix/Linux
inotify_add_watch()函數(shù) Unix/Linux
chmod()函數(shù) Unix/Linux
_exit()函數(shù) Unix/Linux
epoll_ctl()函數(shù) Unix/Linux
Unix/Linux系統(tǒng)調(diào)用
futimesat()函數(shù) Unix/Linux
oldolduname()函數(shù) Unix/Linux
sched_rr_get_interval()函數(shù) Unix/Linux
oldstat()函數(shù) Unix/Linux
pselect()函數(shù) Unix/Linux
close()函數(shù) Unix/Linux
add_key()函數(shù) Unix/Linux
clone()函數(shù) Unix/Linux
rename()函數(shù) Unix/Linux
msgop()函數(shù) Unix/Linux
getrlimit()函數(shù) Unix/Linux
linkat()函數(shù) Unix/Linux
ioprio_set()函數(shù) Unix/Linux
insw()函數(shù) Unix/Linux
munlock()函數(shù) Unix/Linux
getgid()函數(shù) Unix/Linux
chdir()函數(shù) Unix/Linux
rmdir()函數(shù) Unix/Linux
ioctl()函數(shù) Unix/Linux
lchown()函數(shù) Unix/Linux
execve()函數(shù) Unix/Linux
epoll_wait()函數(shù) Unix/Linux
fstatat()函數(shù) Unix/Linux
truncate()函數(shù) Unix/Linux
lock()函數(shù) Unix/Linux
outsb()函數(shù) Unix/Linux
chroot()函數(shù) Unix/Linux
kexec_load()函數(shù) Unix/Linux
afs_syscall()函數(shù) Unix/Linux
dup2()函數(shù) Unix/Linux
_newselect()函數(shù) Unix/Linux
inotify_rm_watch()函數(shù) Unix/Linux
recv()函數(shù) Unix/Linux
msgsnd()函數(shù) Unix/Linux
getdtablesize()函數(shù) Unix/Linux
ioperm()函數(shù) Unix/Linux
munmap()函數(shù) Unix/Linux
getpriority()函數(shù) Unix/Linux
sched_get_priority_min()函數(shù) Unix/Linux
outw_p()函數(shù) Unix/Linux
kill()函數(shù) Unix/Linux
lookup_dcookie()函數(shù) Unix/Linux
accept()函數(shù) Unix/Linux
obsolete()函數(shù) Unix/Linux
pread()函數(shù) Unix/Linux
getgroups()函數(shù) Unix/Linux
personality()函數(shù) Unix/Linux
recvfrom()函數(shù) Unix/Linux
putpmsg()函數(shù) Unix/Linux
getgroups()函數(shù) Unix/Linux
remap_file_pages()函數(shù) Unix/Linux
request_key()函數(shù) Unix/Linux
mount()函數(shù) Unix/Linux
sched_setscheduler()函數(shù) Unix/Linux
mkdirat()函數(shù) Unix/Linux
nfsservctl()函數(shù) Unix/Linux
getuid()函數(shù) Unix/Linux
prof()函數(shù) Unix/Linux
exit_group函數(shù) Unix/Linux
io_cancel()函數(shù) Unix/Linux
mmap()函數(shù) Unix/Linux
mremap()函數(shù) Unix/Linux
getitimer()函數(shù) Unix/Linux
unimplemented()函數(shù) Unix/Linux
read()函數(shù) Unix/Linux
inl()函數(shù) Unix/Linux
posix_fadvise()函數(shù) Unix/Linux
open()函數(shù) Unix/Linux
listen()函數(shù) Unix/Linux
io_destroy()函數(shù) Unix/Linux
acct()函數(shù) Unix/Linux
fcntl()函數(shù) Unix/Linux
recvmsg()函數(shù) Unix/Linux
statfs()函數(shù) Unix/Linux
oldlstat()函數(shù) Unix/Linux
outb()函數(shù) Unix/Linux
getpagesize()函數(shù) Unix/Linux
sched_yield()函數(shù) Unix/Linux
outw()函數(shù) Unix/Linux
inw_p()函數(shù) Unix/Linux
setpgid()函數(shù) Unix/Linux
quotactl()函數(shù) Unix/Linux
prctl()函數(shù) Unix/Linux
fattach()函數(shù) Unix/Linux
readahead()函數(shù) Unix/Linux
msgget()函數(shù) Unix/Linux
gethostname()函數(shù) Unix/Linux
semctl()函數(shù) Unix/Linux
munlockall()函數(shù) Unix/Linux
iopl()函數(shù) Unix/Linux
fdetach()函數(shù) Unix/Linux
getuid()函數(shù) Unix/Linux
gettid()函數(shù) Unix/Linux
pwrite()函數(shù) Unix/Linux
isastream()函數(shù) Unix/Linux
get_thread_area()函數(shù) Unix/Linux
mpx()函數(shù) Unix/Linux
io_getevents()函數(shù) Unix/Linux
lstat()函數(shù) Unix/Linux
readv()函數(shù) Unix/Linux
exit()函數(shù) Unix/Linux
inw()函數(shù) Unix/Linux
fchmod()函數(shù) Unix/Linux
mq_getsetattr()函數(shù) Unix/Linux
get_robust_list()函數(shù) Unix/Linux
_llseek()函數(shù) Unix/Linux
gettimeofday()函數(shù) Unix/Linux
nice()函數(shù) Unix/Linux
security()函數(shù) Unix/Linux
sched_get_priority_max()函數(shù) Unix/Linux
outb_p()函數(shù) Unix/Linux
intro()函數(shù) Unix/Linux
alarm()函數(shù) Unix/Linux
putmsg()函數(shù) Unix/Linux
fork()函數(shù) Unix/Linux
getpgrp()函數(shù) Unix/Linux
link()函數(shù) Unix/Linux
getcwd()函數(shù) Unix/Linux
insl()函數(shù) Unix/Linux
getsockname()函數(shù) Unix/Linux
dup()函數(shù) Unix/Linux
connect()函數(shù) Unix/Linux
select()函數(shù) Unix/Linux
futex()函數(shù) Unix/Linux
outsw()函數(shù) Unix/Linux
query_module()函數(shù) Unix/Linux
reboot()函數(shù) Unix/Linux
create_module()函數(shù) Unix/Linux
adjtimex()函數(shù) Unix/Linux
mlock()函數(shù) Unix/Linux
statvfs()函數(shù) Unix/Linux
gtty()函數(shù) Unix/Linux
epoll_create()函數(shù) Unix/Linux
bind()函數(shù) Unix/Linux
inl_p()函數(shù) Unix/Linux
select_tut()函數(shù) Unix/Linux
mincore()函數(shù) Unix/Linux
getresuid()函數(shù) Unix/Linux
getpmsg()函數(shù) Unix/Linux
getcontext()函數(shù) Unix/Linux
killpg()函數(shù) Unix/Linux
olduname()函數(shù) Unix/Linux
openat()函數(shù) Unix/Linux
pause()函數(shù) Unix/Linux
alloc_hugepages()函數(shù) Unix/Linux
ioctl_list()函數(shù) Unix/Linux
readlinkat()函數(shù) Unix/Linux
mprotect()函數(shù) Unix/Linux
getdomainname()函數(shù) Unix/Linux
readlink()函數(shù) Unix/Linux
madvise()函數(shù) Unix/Linux
bdflush()函數(shù) Unix/Linux
ipc()函數(shù) Unix/Linux
ptrace()函數(shù) Unix/Linux
getrusage()函數(shù) Unix/Linux
msync()函數(shù) Unix/Linux
faccessat()函數(shù) Unix/Linux
modify_ldt()函數(shù) Unix/Linux
get_kernel_syms()函數(shù) Unix/Linux
getpid()函數(shù) Unix/Linux
fsync()函數(shù) Unix/Linux
msgctl()函數(shù) Unix/Linux
break未實現(xiàn) Unix/Linux
sched_setparam()函數(shù) Unix/Linux
fchown()函數(shù) Unix/Linux
cacheflush()函數(shù) Unix/Linux
fdatasync()函數(shù) Unix/Linux
flock()函數(shù) Unix/Linux
pivot_root()函數(shù) Unix/Linux
inotify_init()函數(shù) Unix/Linux
fchmodat()函數(shù) Unix/Linux
keyctl()函數(shù) Unix/Linux
llseek()函數(shù) Unix/Linux
outb()函數(shù) Unix/Linux
pipe()函數(shù) Unix/Linux
io_submit()函數(shù) Unix/Linux
ppoll()函數(shù) Unix/Linux
multiplexer()函數(shù) Unix/Linux
access()函數(shù) Unix/Linux
sched_getparam()函數(shù) Unix/Linux
chown()函數(shù) Unix/Linux
readdir()函數(shù) Unix/Linux
inb_p()函數(shù) Unix/Linux
outsl()函數(shù) Unix/Linux
nanosleep()函數(shù) Unix/Linux
alloc_hugepages()函數(shù) Unix/Linux
sbrk()函數(shù) Unix/Linux
move_pages()函數(shù) Unix/Linux
fchdir()函數(shù) Unix/Linux
renameat()函數(shù) Unix/Linux
getppid()函數(shù) Unix/Linux
getsid()函數(shù) Unix/Linux
oldfstat()函數(shù) Unix/Linux
lseek()函數(shù) Unix/Linux
stat()函數(shù) Unix/Linux
path_resolution()函數(shù) Unix/Linux
getunwind()函數(shù) Unix/Linux
getsockopt()函數(shù) Unix/Linux
mmap2()函數(shù) Unix/Linux
getdents()函數(shù) Unix/Linux
fchownat()函數(shù) Unix/Linux
mkdir()函數(shù) Unix/Linux
perfmonctl()函數(shù) Unix/Linux
open()函數(shù) Unix/Linux
idle()函數(shù) Unix/Linux
poll()函數(shù) Unix/Linux
brk()函數(shù) Unix/Linux
sched_setaffinity()函數(shù) Unix/Linux
mlockall()函數(shù) Unix/Linux

select_tut()函數(shù) Unix/Linux

select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO - 同步I / O復(fù)用

內(nèi)容簡介

#include <sys/time.h> 
#include <sys/types.h> 
#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *utimeout);

int pselect(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, const struct timespec *ntimeout, sigset_t *sigmask);

FD_CLR(int fd, fd_set *set); 
FD_ISSET(int fd, fd_set *set); 
FD_SET(int fd, fd_set *set); 
FD_ZERO(fd_set *set);

描述

select() (or pselect()) is the pivot function of most C programs that handle more than one simultaneous file descriptor (or socket handle) in an efficient manner. Its principal arguments are three arrays of file descriptors: readfdswritefds, and exceptfds. The way that select() is usually used is to block while waiting for a "change of status" on one or more of the file descriptors. A "change of status" is when more characters become available from the file descriptor, or when space becomes available within the kernel’s internal buffers for more to be written to the file descriptor, or when a file descriptor goes into error (in the case of a socket or pipe this is when the other end of the connection is closed).

In summary, select() just watches multiple file descriptors, and is the standard Unix call to do so.

The arrays of file descriptors are called file descriptor sets. Each set is declared as typefd_set, and its contents can be altered with the macros FD_CLR(), FD_ISSET(),FD_SET(), and FD_ZERO(). FD_ZERO() is usually the first function to be used on a newly declared set. Thereafter, the individual file descriptors that you are interested in can be added one by one with FD_SET(). select() modifies the contents of the sets according to the rules described below; after calling select() you can test if your file descriptor is still present in the set with the FD_ISSET() macro. FD_ISSET() returns non-zero if the descriptor is present and zero if it is not. FD_CLR() removes a file descriptor from the set.

ARGUMENTS

標(biāo)簽 描述
readfds
  This set is watched to see if data is available for reading from any of its file descriptors. After select() has returned, readfds will be cleared of all file descriptors except for those file descriptors that are immediately available for reading with a recv() (for sockets) or read() (for pipes, files, and sockets) call.
writefds
  This set is watched to see if there is space to write data to any of its file descriptors. After select() has returned, writefds will be cleared of all file descriptors except for those file descriptors that are immediately available for writing with a send() (for sockets) or write() (for pipes, files, and sockets) call.
exceptfds
  This set is watched for exceptions or errors on any of the file descriptors. However, that is actually just a rumor. How you useexceptfds is to watch for out-of-band (OOB) data. OOB data is data sent on a socket using the MSG_OOB flag, and henceexceptfds only really applies to sockets. See recv(2) and send(2) about this. After select() has returned, exceptfds will be cleared of all file descriptors except for those descriptors that are available for reading OOB data. You can only ever read one byte of OOB data though (which is done with recv()), and writing OOB data (done with send()) can be done at any time and will not block. Hence there is no need for a fourth set to check if a socket is available for writing OOB data.
nfds This is an integer one more than the maximum of any file descriptor in any of the sets. In other words, while you are busy adding file descriptors to your sets, you must calculate the maximum integer value of all of them, then increment this value by one, and then pass this as nfds to select().
utimeout
  This is the longest time select() must wait before returning, even if nothing interesting happened. If this value is passed as NULL, then select() blocks indefinitely waiting for an event.utimeout can be set to zero seconds, which causes select() to return immediately. The structure struct timeval is defined as,

 

struct timeval {
    time_t tv_sec;    /* seconds */
    long tv_usec;     /* microseconds */
};
ntimeout
  This argument has the same meaning as utimeout but struct timespec has nanosecond precision as follows,
struct timespec {
    long tv_sec;    /* seconds */
    long tv_nsec;   /* nanoseconds */
};
sigmask
  This argument holds a set of signals to allow while performing apselect() call (see sigaddset(3) and sigprocmask(2)). It can be passed as NULL, in which case it does not modify the set of allowed signals on entry and exit to the function. It will then behave just like select().

COMBINING SIGNAL AND DATA EVENTS

pselect() must be used if you are waiting for a signal as well as data from a file descriptor. Programs that receive signals as events normally use the signal handler only to raise a global flag. The global flag will indicate that the event must be processed in the main loop of the program. A signal will cause the select() (or pselect()) call to return with errno set to EINTR. This behavior is essential so that signals can be processed in the main loop of the program, otherwise select() would block indefinitely. Now, somewhere in the main loop will be a conditional to check the global flag. So we must ask: what if a signal arrives after the conditional, but before the select() call? The answer is that select() would block indefinitely, even though an event is actually pending. This race condition is solved by the pselect() call. This call can be used to mask out signals that are not to be received except within the pselect() call. For instance, let us say that the event in question was the exit of a child process. Before the start of the main loop, we would block SIGCHLD using sigprocmask(). Our pselect() call would enable SIGCHLD by using the virgin signal mask. Our program would look like:
int child_events = 0;

void child_sig_handler (int x) {
    child_events++;
    signal (SIGCHLD, child_sig_handler);
}


int main (int argc, char **argv) {
    sigset_t sigmask, orig_sigmask;


    sigemptyset (&sigmask);
    sigaddset (&sigmask, SIGCHLD);
    sigprocmask (SIG_BLOCK, &sigmask,
                                &orig_sigmask);


    signal (SIGCHLD, child_sig_handler);


    for (;;) { /* main loop */
        for (; child_events > 0; child_events--) {
            /* do event work here */
        }
        r = pselect (nfds, &rd, &wr, &er, 0, &orig_sigmask);


        /* main body of program */
    }
}

實用

So what is the point of select()? Can’t I just read and write to my descriptors whenever I want? The point of select() is that it watches multiple descriptors at the same time and properly puts the process to sleep if there is no activity. It does this while enabling you to handle multiple simultaneous pipes and sockets. Unix programmers often find themselves in a position where they have to handle I/O from more than one file descriptor where the data flow may be intermittent. If you were to merely create a sequence of read() and write() calls, you would find that one of your calls may block waiting for data from/to a file descriptor, while another file descriptor is unused though available for data. select() efficiently copes with this situation.

A simple example of the use of select() can be found in the select(2) manual page.

PORT FORWARDING EXAMPLE

Here is an example that better demonstrates the true utility of select(). The listing below is a TCP forwarding program that forwards from one TCP port to another.
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <string.h>
#include <signal.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
static int forward_port;


#undef max
#define max(x,y) ((x) > (y) ? (x) : (y))


static int listen_socket (int listen_port) {
    struct sockaddr_in a;
    int s;
    int yes;
    if ((s = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
        perror ("socket");
        return -1;
    }
    yes = 1;
    if (setsockopt
        (s, SOL_SOCKET, SO_REUSEADDR,
         (char *) &yes, sizeof (yes)) < 0) {
        perror ("setsockopt");
        close (s);
        return -1;
    }
    memset (&a, 0, sizeof (a));
    a.sin_port = htons (listen_port);
    a.sin_family = AF_INET;
    if (bind
        (s, (struct sockaddr *) &a, sizeof (a)) < 0) {
        perror ("bind");
        close (s);
        return -1;
    }
    printf ("accepting connections on port %d\n",
            (int) listen_port);
    listen (s, 10);
    return s;
}


static int connect_socket (int connect_port,
                           char *address) {
    struct sockaddr_in a;
    int s;
    if ((s = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
        perror ("socket");
        close (s);
        return -1;
    }


    memset (&a, 0, sizeof (a));
    a.sin_port = htons (connect_port);
    a.sin_family = AF_INET;


    if (!inet_aton
        (address,
         (struct in_addr *) &a.sin_addr.s_addr)) {
        perror ("bad IP address format");
        close (s);
        return -1;
    }


    if (connect
        (s, (struct sockaddr *) &a,
         sizeof (a)) < 0) {
        perror ("connect()");
        shutdown (s, SHUT_RDWR);
        close (s);
        return -1;
    }
    return s;
}


#define SHUT_FD1 {                      \
        if (fd1 >= 0) {                 \
            shutdown (fd1, SHUT_RDWR);  \
            close (fd1);                \
            fd1 = -1;                   \
        }                               \
    }


#define SHUT_FD2 {                      \
        if (fd2 >= 0) {                 \
            shutdown (fd2, SHUT_RDWR);  \
            close (fd2);                \
            fd2 = -1;                   \
        }                               \
    }


#define BUF_SIZE 1024


int main (int argc, char **argv) {
    int h;
    int fd1 = -1, fd2 = -1;
    char buf1[BUF_SIZE], buf2[BUF_SIZE];
    int buf1_avail, buf1_written;
    int buf2_avail, buf2_written;


    if (argc != 4) {
        fprintf (stderr,
                 "Usage\n\tfwd  \
 \n");
        exit (1);
    }


    signal (SIGPIPE, SIG_IGN);


    forward_port = atoi (argv[2]);


    h = listen_socket (atoi (argv[1]));
    if (h < 0)
        exit (1);


    for (;;) {
        int r, nfds = 0;
        fd_set rd, wr, er;
        FD_ZERO (&rd);
        FD_ZERO (&wr);
        FD_ZERO (&er);
        FD_SET (h, &rd);
        nfds = max (nfds, h);
        if (fd1 > 0 && buf1_avail < BUF_SIZE) {
            FD_SET (fd1, &rd);
            nfds = max (nfds, fd1);
        }
        if (fd2 > 0 && buf2_avail < BUF_SIZE) {
            FD_SET (fd2, &rd);
            nfds = max (nfds, fd2);
        }
        if (fd1 > 0
            && buf2_avail - buf2_written > 0) {
            FD_SET (fd1, &wr);
            nfds = max (nfds, fd1);
        }
        if (fd2 > 0
            && buf1_avail - buf1_written > 0) {
            FD_SET (fd2, &wr);
            nfds = max (nfds, fd2);
        }
        if (fd1 > 0) {
            FD_SET (fd1, &er);
            nfds = max (nfds, fd1);
        }
        if (fd2 > 0) {
            FD_SET (fd2, &er);
            nfds = max (nfds, fd2);
        }


        r = select (nfds + 1, &rd, &wr, &er, NULL);


        if (r == -1 && errno == EINTR)
            continue;
        if (r < 0) {
            perror ("select()");
            exit (1);
        }
        if (FD_ISSET (h, &rd)) {
            unsigned int l;
            struct sockaddr_in client_address;
            memset (&client_address, 0, l =
                    sizeof (client_address));
            r = accept (h, (struct sockaddr *)
                        &client_address, &l);
            if (r < 0) {
                perror ("accept()");
            } else {
                SHUT_FD1;
                SHUT_FD2;
                buf1_avail = buf1_written = 0;
                buf2_avail = buf2_written = 0;
                fd1 = r;
                fd2 =
                    connect_socket (forward_port,
                                    argv[3]);
                if (fd2 < 0) {
                    SHUT_FD1;
                } else
                    printf ("connect from %s\n",
                            inet_ntoa
                            (client_address.sin_addr));
            }
        }
/* NB: read oob data before normal reads */
        if (fd1 > 0)
            if (FD_ISSET (fd1, &er)) {
                char c;
                errno = 0;
                r = recv (fd1, &c, 1, MSG_OOB);
                if (r < 1) {
                    SHUT_FD1;
                } else
                    send (fd2, &c, 1, MSG_OOB);
            }
        if (fd2 > 0)
            if (FD_ISSET (fd2, &er)) {
                char c;
                errno = 0;
                r = recv (fd2, &c, 1, MSG_OOB);
                if (r < 1) {
                    SHUT_FD1;
                } else
                    send (fd1, &c, 1, MSG_OOB);
            }
        if (fd1 > 0)
            if (FD_ISSET (fd1, &rd)) {
                r =
                    read (fd1, buf1 + buf1_avail,
                          BUF_SIZE - buf1_avail);
                if (r < 1) {
                    SHUT_FD1;
                } else
                    buf1_avail += r;
            }
        if (fd2 > 0)
            if (FD_ISSET (fd2, &rd)) {
                r =
                    read (fd2, buf2 + buf2_avail,
                          BUF_SIZE - buf2_avail);
                if (r < 1) {
                    SHUT_FD2;
                } else
                    buf2_avail += r;
            }
        if (fd1 > 0)
            if (FD_ISSET (fd1, &wr)) {
                r =
                    write (fd1,
                           buf2 + buf2_written,
                           buf2_avail -
                           buf2_written);
                if (r < 1) {
                    SHUT_FD1;
                } else
                    buf2_written += r;
            }
        if (fd2 > 0)
            if (FD_ISSET (fd2, &wr)) {
                r =
                    write (fd2,
                           buf1 + buf1_written,
                           buf1_avail -
                           buf1_written);
                if (r < 1) {
                    SHUT_FD2;
                } else
                    buf1_written += r;
            }
/* check if write data has caught read data */
        if (buf1_written == buf1_avail)
            buf1_written = buf1_avail = 0;
        if (buf2_written == buf2_avail)
            buf2_written = buf2_avail = 0;
/* one side has closed the connection, keep
   writing to the other side until empty */
        if (fd1 < 0
            && buf1_avail - buf1_written == 0) {
            SHUT_FD2;
        }
        if (fd2 < 0
            && buf2_avail - buf2_written == 0) {
            SHUT_FD1;
        }
    }
    return 0;
}
vetica, arial, sans-serif; color: rgb(0, 0, 0);"> The above program properly forwards most kinds of TCP connections including OOB signal data transmitted by telnet servers. It handles the tricky problem of having data flow in both directions simultaneously. You might think it more efficient to use a fork() call and devote a thread to each stream. This becomes more tricky than you might suspect. Another idea is to set non-blocking I/O using an ioctl() call. This also has its problems because you end up having to have inefficient timeouts.

 

The program does not handle more than one simultaneous connection at a time, although it could easily be extended to do this with a linked list of buffers — one for each connection. At the moment, new connections cause the current connection to be dropped.

SELECT LAW

Many people who try to use select() come across behavior that is difficult to understand and produces non-portable or borderline results. For instance, the above program is carefully written not to block at any point, even though it does not set its file descriptors to non-blocking mode at all (see ioctl(2)). It is easy to introduce subtle errors that will remove the advantage of using select(), hence I will present a list of essentials to watch for when using the select() call.
    標(biāo)簽 描述
    1. You should always try to use select() without a timeout. Your program should have nothing to do if there is no data available. Code that depends on timeouts is not usually portable and is difficult to debug.
    2. The value nfds must be properly calculated for efficiency as explained a
          <sup id="qugoc"></sup>
        • <del id="qugoc"><button id="qugoc"></button></del>
        • <nav id="qugoc"><code id="qugoc"></code></nav>
          <abbr id="qugoc"></abbr>