鍍金池/ 教程/ GO/ 6.12 通過內(nèi)存緩存來提升性能
4.7 strings 和 strconv 包
13.6 啟動外部命令和程序
?# 11.4 類型判斷:type-switch
12.1 讀取用戶的輸入
10.6 方法
12.2 文件讀寫
13 錯誤處理與測試
9.3 鎖和 sync 包
12.3 文件拷貝
?# 11.7 第一個例子:使用 Sorter 接口排序
?# 11.5 測試一個值是否實現(xiàn)了某個接口
6.4 defer 和追蹤
12.10 XML 數(shù)據(jù)格式
13.10 性能調(diào)試:分析并優(yōu)化 Go 程序
?# 11.1 接口是什么
2.2 Go 環(huán)境變量
2.6 安裝目錄清單
2.5 在 Windows 上安裝 Go
11.11 Printf 和反射
1.2 語言的主要特性與發(fā)展的環(huán)境和影響因素
9.0 包(package)
7.4 切片重組(reslice)
13.2 運行時異常和 panic
10.2 使用工廠方法創(chuàng)建結(jié)構(gòu)體實例
12.8 使用接口的實際例子:fmt.Fprintf
2.4 在 Mac OS X 上安裝 Go
3.8 Go 性能說明
7.2 切片
8.0 Map
3.1 Go 開發(fā)環(huán)境的基本要求
5.6 標(biāo)簽與 goto
6.10 使用閉包調(diào)試
9.5 自定義包和可見性
4.3 常量
?# 11.2 接口嵌套接口
6.5 內(nèi)置函數(shù)
前言
10.8 垃圾回收和 SetFinalizer
2.8 Go 解釋器
13.7 Go 中的單元測試和基準(zhǔn)測試
6.8 閉包
4.9 指針
13.1 錯誤處理
10.1 結(jié)構(gòu)體定義
5.1 if-else 結(jié)構(gòu)
6.6 遞歸函數(shù)
9.9 通過 Git 打包和安裝
2.7 Go 運行時(runtime)
10.7 類型的 String() 方法和格式化描述符
3.7 其它工具
9.6 為自定義包使用 godoc
11.12 接口與動態(tài)類型
13.3 從 panic 中恢復(fù)(Recover)
10.3 使用自定義包中的結(jié)構(gòu)體
11.14 結(jié)構(gòu)體、集合和高階函數(shù)
3.6 生成代碼文檔
9.2 regexp 包
4.1 文件名、關(guān)鍵字與標(biāo)識符
?# 11.6 使用方法集與接口
7.0 數(shù)組與切片
7.1 聲明和初始化
12.11 用 Gob 傳輸數(shù)據(jù)
5.5 Break 與 continue
1.1 起源與發(fā)展
?# 11 接口(Interfaces)與反射(reflection)
6.9 應(yīng)用閉包:將函數(shù)作為返回值
4.2 Go 程序的基本結(jié)構(gòu)和要素
8.6 將 map 的鍵值對調(diào)
6.11 計算函數(shù)執(zhí)行時間
5.0 控制結(jié)構(gòu)
10.5 匿名字段和內(nèi)嵌結(jié)構(gòu)體
4.6 字符串
3.0 編輯器、集成開發(fā)環(huán)境與其它工具
13.8 測試的具體例子
7.6 字符串、數(shù)組和切片的應(yīng)用
8.4 map 類型的切片
3.9 與其它語言進(jìn)行交互
7.3 For-range 結(jié)構(gòu)
9.7 使用 go install 安裝自定義包
6.0 函數(shù)
9.8 自定義包的目錄結(jié)構(gòu)、go install 和 go test
6.3 傳遞變長參數(shù)
13.9 用(測試數(shù)據(jù))表驅(qū)動測試
11.9 空接口
8.1 聲明、初始化和 make
6.2 函數(shù)參數(shù)與返回值
9.11 在 Go 程序中使用外部庫
3.3 調(diào)試器
4.5 基本類型和運算符
?# 11.8 第二個例子:讀和寫
12.5 用 buffer 讀取文件
總結(jié):Go 中的面向?qū)ο?/span>
11.10 反射包
12.7 用 defer 關(guān)閉文件
9.4 精密計算和 big 包
4.4 變量
6.1 介紹
13.4 自定義包中的錯誤處理和 panicking
12.4 從命令行讀取參數(shù)
9.10 Go 的外部包和項目
8.3 for-range 的配套用法
3.5 格式化代碼
10.4 帶標(biāo)簽的結(jié)構(gòu)體
7.5 切片的復(fù)制與追加
?# 11.3 類型斷言:如何檢測和轉(zhuǎn)換接口變量的類型
5.4 for 結(jié)構(gòu)
4.8 時間和日期
2.3 在 Linux 上安裝 Go
12 讀寫數(shù)據(jù)
6.12 通過內(nèi)存緩存來提升性能
9.1 標(biāo)準(zhǔn)庫概述
12.6 用切片讀寫文件
10 結(jié)構(gòu)(struct)與方法(method)
8.5 map 的排序
12.9 JSON 數(shù)據(jù)格式
13.5 一種用閉包處理錯誤的模式
3.2 編輯器和集成開發(fā)環(huán)境
12.12 Go 中的密碼學(xué)
5.2 測試多返回值函數(shù)的錯誤
6.7 將函數(shù)作為參數(shù)
8.2 測試鍵值對是否存在及刪除元素
3.4 構(gòu)建并運行 Go 程序
2.1 平臺與架構(gòu)
5.3 switch 結(jié)構(gòu)

6.12 通過內(nèi)存緩存來提升性能

當(dāng)在進(jìn)行大量的計算時,提升性能最直接有效的一種方式就是避免重復(fù)計算。通過在內(nèi)存中緩存和重復(fù)利用相同計算的結(jié)果,稱之為內(nèi)存緩存。最明顯的例子就是生成斐波那契數(shù)列的程序(詳見第 6.6 和 6.11 節(jié)):

要計算數(shù)列中第 n 個數(shù)字,需要先得到之前兩個數(shù)的值,但很明顯絕大多數(shù)情況下前兩個數(shù)的值都是已經(jīng)計算過的。即每個更后面的數(shù)都是基于之前計算結(jié)果的重復(fù)計算,正如示例 6.11 fibonnaci.go 所展示的那樣。

而我們要做就是將第 n 個數(shù)的值存在數(shù)組中索引為 n 的位置(詳見第 7 章),然后在數(shù)組中查找是否已經(jīng)計算過,如果沒有找到,則再進(jìn)行計算。

程序 Listing 6.17 - fibonacci_memoization.go 就是依照這個原則實現(xiàn)的,下面是計算到第 40 位數(shù)字的性能對比:

  • 普通寫法:4.730270 秒
  • 內(nèi)存緩存:0.001000 秒

內(nèi)存緩存的優(yōu)勢顯而易見,而且您還可以將它應(yīng)用到其它類型的計算中,例如使用 map(詳見第 7 章)而不是數(shù)組或切片(Listing 6.21 - fibonacci_memoization.go):

package main

import (
    "fmt"
    "time"
)

const LIM = 41

var fibs [LIM]uint64

func main() {
    var result uint64 = 0
    start := time.Now()
    for i := 0; i < LIM; i++ {
        result = fibonacci(i)
        fmt.Printf("fibonacci(%d) is: %d\n", i, result)
    }
    end := time.Now()
    delta := end.Sub(start)
    fmt.Printf("longCalculation took this amount of time: %s\n", delta)
}
func fibonacci(n int) (res uint64) {
    // memoization: check if fibonacci(n) is already known in array:
    if fibs[n] != 0 {
        res = fibs[n]
        return
    }
    if n <= 1 {
        res = 1
    } else {
        res = fibonacci(n-1) + fibonacci(n-2)
    }
    fibs[n] = res
    return
}

內(nèi)存緩存的技術(shù)在使用計算成本相對昂貴的函數(shù)時非常有用(不僅限于例子中的遞歸),譬如大量進(jìn)行相同參數(shù)的運算。這種技術(shù)還可以應(yīng)用于純函數(shù)中,即相同輸入必定獲得相同輸出的函數(shù)。

鏈接